An iterative Riemann solver for systems of hyperbolic conservation laws, with application to hyperelastic solid mechanics

نویسنده

  • G. H. Miller
چکیده

In this paper, we present a general iterative method for the solution of the Riemann problem for hyperbolic systems of PDEs. The method is based on the multiple shooting method for free boundary value problems. We demonstrate the method by solving one-dimensional Riemann problems for hyperelastic solid mechanics. Even for conditions representative of routine laboratory conditions and military ballistics, dramatic differences are seen between the exact and approximate Riemann solution. The greatest discrepancy arises from misallocation of energy between compressional and thermal modes by the approximate solver, resulting in nonphysical entropy and temperature estimates. Several pathological conditions arise in common practice and modifications to the method to handle these are discussed. These include points where genuine nonlinearity is lost, degeneracies, and eigenvector deficiencies that occur upon melting. 2003 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-similar solutions‎ ‎of the Riemann problem for two-dimensional systems of conservation‎ ‎laws

In this paper, a new approach is applied to study the self-similar solutions of 2×2 systems of nonlinear hyperbolic conservation laws. A notion of characteristic directions is introduced and then used to construct local and smooth solutions of the associated Riemann problem

متن کامل

Derivative Riemann solvers for systems of conservation laws and ADER methods

In this paper we first briefly review the semi-analytical method [20] for solving the Derivative Riemann Problem for systems of hyperbolic conservation laws with source terms. Next, we generalize it to hyperbolic systems for which the Riemann problem solution is not available. As an application example we implement the new derivative Riemann solver in the high-order finite-volume ADER advection...

متن کامل

A reduced stability condition for nonlinear relaxation to conservation laws

We consider multidimensional hyperbolic systems of conservation laws with relaxation, together with their associated limit systems. A strong stability condition for such asymptotics has been introduced by Chen, Levermore, Liu in Comm. Pure Appl. Math. 47, 787-830, namely the existence of an entropy extension. We propose here a new stability condition, the reduced stability condition, which is w...

متن کامل

Krylov-Riemann Solver for Large Hyperbolic Systems of Conservation Laws

This paper presents a Riemann solver for nonlinear hyperbolic systems of conservation laws based on a Krylov subspace approximation of the upwinding dissipation vector. In the general case, the solver does not require any detailed information of the eigensystem, except an estimate of the global maximal propagation speed. It uses successive flux function evaluations to obtain a numerical flux wh...

متن کامل

Numerical Methods for Hyperbolic Conservation Laws with Stiff Relaxation II. Higher-Order Godunov Methods

We present a higher order Godunov method for hyperbolic systems of conservation laws with stii, relaxing source terms. Our goal is to develop a Godunov method which produces higher order accurate solutions using time and space increments governed solely by the non-stii part of the system, i.e., without fully resolving the eeect of the stii source terms. We assume that the system satisses a cert...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003